Researchers Have Figured Out How to 3D Print Bridges With Dramatically Less Waste and C02

The bottom of a bridge is shown — with the concrete grooved in long patterns. Children run underneath on the grass.

Researchers have used 3D printing to build load-bearing concrete structures that require significantly less material and no steel reinforcement or mortar.

Millions of new buildings all over the world are being constructed with reinforced concrete, even though this type of construction generates large amounts of CO2 emissions.

The steel used for the reinforcement and the cement for the concrete are especially problematic in this regard. The researchers have now presented a way to reduce both, in a real project.

A small unique bridge is sitting in the middle of a park. It's concrete and a couple takes a selfie in front of it. Its stairs are made of wood.
Photo courtesy of Studio Naaro

ETH Zurich architects and engineers from the Block Research Group in collaboration with Zaha Hadid Architects built a 12-by-16-meter (around 39.37-by-52.5 feet) arched footbridge in a park in Venice—entirely without reinforcement.

Using an additive process, the construction dubbed “Striatus” was built with concrete blocks that form an arch much like traditional masonry bridges.

This compression-only structure allows the forces to travel to the footings, which are tied together on the ground. The dry-assembled construction is stable due to its geometry only.

The bottom of a bridge is shown — with the concrete grooved in long patterns. Children run underneath on the grass.
Photo courtesy of Studio Naaro

What is completely new is the type of 3D-printed concrete, which the researchers developed together with the company Incremental3D.

The concrete is not applied horizontally in the usual way but instead at specific angles such that they are orthogonal to the flow of compressive forces.

This keeps the printed layers in the blocks nicely pressed together, without the need for reinforcement or post-tensioning. The company Holcim developed this special concrete ink for the 3D printer precisely for this purpose.

"This precise method of 3D concrete printing allows us to combine the principles of traditional vaulted construction with digital concrete fabrication to use material only where it is structurally necessary without producing waste."

“This precise method of 3D concrete printing allows us to combine the principles of traditional vaulted construction with digital concrete fabrication to use material only where it is structurally necessary without producing waste,” says Philippe Block, a professor at ETH.

Because the construction does not need mortar, the blocks can be dismantled, and the bridge reassembled again at a different location. If the construction is no longer needed, the materials can simply be separated and recycled.

This article is published in collaboration with Futurity

Article Details

October 12, 2021 5:40 PM
Two images side by side. On the left, a person cuts into a Thanksgiving turkey. On the right, a map shows a turkey's journey from Mayberry, NC to Plymouth, MA.

Interactive turkey tracker follows carbon emissions of Thanksgiving birds 'from farm to fork'

The tool follows a single turkey’s journey across the supply chain, with optimizations to help reduce its environmental impact.
A thick, green Janis crystal absorbs water

'Smart crystals' that harvest water from the air could combat water scarcity, NYU researchers say

The organic crystals were modeled after desert plants and animals, which have evolved to have water-absorbing capabilities.
No items found.

Want to stay up-to-date on positive news?

The best email in your inbox.
Filled with the day’s best good news.